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Abstract-A two-dimensional numerical model, based on the elliptic Navier-Stokes equations, is developed 
to predict the location of incipient instability, xg, in low Reynolds number water Rows in vertical annuli. 
Results show that neglecting the radial momentum can underpredict the values of xrr at high Gr,/Re values 
by as much as 45%. Conversely, the axial momentum diffusion only insignificantly affects the velocity 
fields and, hence, the accuracy of predicting xrr. The results of a parametric analysis investigating the effects 
of various operating conditions and geometrical parameters is used to develop general criteria for predicting 
the onset of flow instability in vertical annuli. These criteria are within + 10 and + 15% of the experimental 

data for buoyancy assisted and opposed flows, respectively. 

INTRODUCTION 

CHARACTXRIZATION of heat transfer to low Reynolds 
number flows in vertical channels is complicated by 
the introduction of buoyant forces at high heat flux- 
to-mass flow ratios (Gr,/Re). At higher Gr,/Re values, 
the variations in fluid viscosity and density across the 
boundary layer become sufficiently large, causing 
significant distortion in the velocity fields and initiat- 
ing transition from stable laminar flow to turbulent 
flow [ 1,2]. Such transition enhances the rates of heat 
transfer downstream of the location of incipient insta- 
bility, also referred to as the location of incipientflow 
transition, xR [3,4]. 

Numerous experimental and theoretical studies 
investigating the transition from stable laminar flow 
to buoyancy induced turbulent flow have been 
reported for pipes [2, 3, 5-71, channels formed by 
parallel plates [8,9], rod bundles [lo, Ill, and vertical 
annuli [4, 14, IS]. The theoretical investigations of 
buoyancy induced instability have only focused on 
relating the conditions for onset of transition to the 
magnitude of the distortion in the axial velocity 
profile. The axial location of incipient instability was 
taken to be equal to that at which both the radial 
gradient of the axial velocity and the axial velocity 
corresponding to some radial coordinate vanish. 
However, the accuracy of this criterion depends on 
the accuracy of calculating the axial velocity profiles 
upstream of xfr. 

Most studies have either assumed fully developed 
flow [ 12,131 or employed the boundary layer approxi- 
mation [14, 151 to calculate the axial velocity profile 
upstream of xr,. Sherwin [ 121 obtained an estimate for 
minimum Gr,,/Re values required to initiate transition 
using the fully developed flow approximation. The 

validity of this approximation is limited to very long 
test sections and low values of Gr,/Re. El-Shaarawi 
and Sharan [ 151 solved the constant property bound- 
ary layer equations to predict xr, for laminar upflow 
of air in a vertical annulus with an isothermal inner 
wall. Similar equations were solved by Sherwin and 
Wallis [14] to predict xrr for laminar downflow of 
water in a vertical annulus with an isofhtx inner wall. 
Although good agreements were reported between the 
boundary layer solution and the experimental data at 
low Gr,/Re values [14], theoretical predictions were 
consistently lower at higher Gr,/Re values. A similar 
trend was also reported for laminar upflow in tubes 
[6]. This disagreement between the experimental data 
and the boundary layer solution at higher Gr,/Re 
values can be attributed to the following simplifying 
assumptions in the boundary layer approach: radial 
momentum transfer is negligible (iTpp/Zr = 0), axial 
diffusion of momentum is negligible, and the fluid 
properties except for density are temperature 
independent. 

To account for these shortcomings of the boundary 
layer approximation, this research developed a 
numerical model that solves the complete set of elliptic 
Navier-Stokes equations with temperature dependent 
fluid properties. The accuracy of the model was veri- 
fied by comparing the model predictions of xrr with 
the experimental data of ref. [4] for both buoyancy 
assisted and opposed flows and those of ref. [14] for 
downflow of water in vertical annuli. Effects of radial 
momentum transfer and axial diffusion on xrr were 
quantified by comparing the model predictions based 
on elliptic governing equations with those obtained, 
as a part of the study, using the parabolic form of 
governing equations and the boundary layer equa- 
tions. To examine the effect of inlet parameters, oper- 

2161 



1162 D. V. RAo and M. S. EL-GESK 

AC 
c, 
D 

D, 
9 

Gr, 
k 

I 
L 
L “II 
m 
rh 
Nu 

P 
P 
Pe 
Pr 

4 
Q 
r 
R 

AR 
Re 
t 
T 

NOMENCLATURE 

cross sectional flow area [m’] U axial velocity [m s- ‘1 
specific heat [kJ kg- ‘1 u dimensionless axial velocity, u’u,, 
diameter [m] V radial velocity [m s- ‘1 
equivalent hydraulic diameter, D, - Di [m] V dimensionless radial velocity, c/c,. 
acceleration due to gravity, 9.8 1 m s- * x axial distance measured from the entrance 
Grashof number, gfiDzq/v*k of the heated section in the direction of 
thermal conductivity [w m- ’ K- ‘1 or the flow [m] 
index used in equations (7)-( 11) x dimensionless axial distance, .Y,~D~ 
index used in equations (7)-( 11) AX axial step width. 
length of the heated section [m] 
length of non-heated calming section (D,) 
number of sweep 

Greek symbols 

mass flow through the annulus [kg s- ‘1 P coefficient of volumetric expansion [K- ‘1 

Nusselt number, qDJk(t,- tb) 
E annulus ratio, D,/Di 

pressure [pa] p dynamic viscosity of water [kg m-* s- ‘1 

dimensionless pressure, p/p&, 
V kinematic viscosity [m’ s- ‘1 

Peclet number, Re - Pr P density of water [kg m- ‘1 

Prandtl number, pC,/k 
surface heat flux [kW m-‘1 Subscripts 
dimensionless heat flux, qr,/k(t,,- tin) 
radial location or radius [m] 
dimensionless radial location, 

(r - ri)/(r, - ri) 

radial step width 
Reynolds number, tiD,/Ay 
temperature [K] 
dimensionless temperature, 

(r- rin)/(tsat- tm> 

b 
cr 
fr 
i 
in 
max 
0 

sat 
W 

water bulk temperature 
critical value 
location oFincipient instability 
inner heated stainless steel tube 
inlet of the test section 
maximum axial velocity 
outer wall of the annulus 
saturation (or boiling point) 
heated wall. 

J 

ating parameters, geometrical parameters and surface Governing equations 
heat flux on xg, a parametric analysis was conducted. 
Based on the results of the parametric analysis as well (a) Continuity 

as the experimental data [4, 141, a general criteria for ~(PW 1 ~(PRV) _ 
the onset of flow instability in both buoyancy assisted 
and opposed flow of water in vertical annuli were 
developed. The next two sections describe the govern- 
ing equations of the model and the numerical scheme 
used in solving these equations. 

PHYSICAL MODEL 

The problem under consideration is that of a steady, 
two-dimensional, axisymmetric, developing laminar 
flow of water in vertical concentric-circular annuli. 
These annuli have a uniformly heated inner wall and 
an insulated outer wall. The basic case analysis 
assumed uniform fluid velocity and temperature at 
the inlet of the test section. Because of the large tem- 
perature variation across the annular gap at high 
Gr,/Re values, the model treats the tluid viscosity as 
temperature dependent, while the variations in fluid 
density were handled using the Boussinesq approxi- 
mation. The steady-state governing equations and the 
boundary conditions, in their conservative form, are 
given below. 

-+--------_” 

ax RdR ’ 

(b) Axial momentum 

auU 1 muv)__g I q Gr T 

dX+- R dR 8X 4Q Re2 

+[;g$&)+-g&g)]. (2) 

(c) Radial momentum 

a(w) I a 
~x+~~(RVV)= -g 

+ [&-&g)]. (3) 

(d) Energy 

d(UT) 1 d(RVT) 

ax+zaR= 
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FIG. 1. Staggered grid used to discretize the governing equations. 

(e) Integral continuity 

Boundary conditions 

U= 1.0, V=O,and T=O 

@ X = 0 (entrance) (6’) 

U = 0, I’= 0, and aT/dR = -Qi(X) 

@ X > 0 ; R = 0 (inner wall) (6”) 

U=O, V=O,anddTpR=O 

@ X 7 0 ; R = 1 (outer wall). (6”‘) 

To assess the effects of axial diffusion and radial 
momentum transfer on the accuracy of the model 
predictions for xR, the model results for three cases, 
each representing a set of simplifying assumptions, 
were compared with the experimental data. In case I, 
the governing equations in their present form (equa- 
tions (l)-(6)) were solved, while in case II the para- 
bolic form of the governing equations, obtained by ne- 
glecting the axial diffusion term in equation (2), were 
solved. Case III assumed a boundary layer flow and 
the velocity and temperature profiles were obtained 
from the solution of the boundary layer equations. 
These equations were deduced from equations (l)- 
(5) by neglecting radial momentum transfer (equation 
(3)) and axial diffusion (last term in equation (2)). 

The governing equations for each of these cases, 
subjected to the prescribed boundary conditions 

(equation (6)), were solved for the velocity and the 
temperature profiles as functions of the axial location. 
The axial location of incipient instability, xlr, was 
defined as that where the axial velocity as well as the 
radial gradient of the axial velocity near one of the 
walls vanish (U = 0 and a.U/aR z 0 ; G R = 0 for 
downflow or @ R = 1 for upflow). Because the ana- 
lytical solution of equations (l)-(6) was unattainable 
a numerical scheme, outlined in the following section, 
was employed to solve these equations for all three 
cases. 

NUMERICAL SCHEME 

Although several numerical schemes have been pro- 
posed to solve the elliptic form of Navier-Stokes equa- 
tions [16, 171, they are not adoptable to the present 
problem because they require specification of the 
entire domain of interest and the outflow boundary 
conditions a priori. In the present problem because 
x, is not known beforehand neither of these require- 
ments could be met. The proposed numerical scheme 
employed an iterative, marching, finite difference 
scheme, which is similar to that proposed by Patankar 
and Spalding [ 181 for solving the parabolic transport 
equations. In addition, the current scheme solves the 
axial diffusion terms in equation (2) (I?‘U~‘?X~) using 
a special Iirst-order finite differencing scheme ; higher 
order of accuracy was obtained by incorporating 
additional sweeps of the calculation domain. 

The proposed numerical scheme divided the cal- 
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culation domain (0 < R < 1 and 0 < X < X,) into Table 1. T&diagonal coefficients used in equations (7)-( IO) 

several control volumes using a staggered grid struc- 
ture [ 191 (see Fig. I). The governing equations (equa- 
tions (l)-(6)) were then reduced to a set of linearized 
finite difference equations by integrating them over 
the respective control volumes. 

(a) Continuity equation 

UTVi.j_t+651/;,j+C;Vi.j+, =rf; for]= 2,ff 

I’i,j=O; forj= i andn+I. (7) 

(b) Axial momentum equation 

4 IJi.k - I + & Vi., + 6 US+ , 

= -aP/dX,+y;; fork = 2,n 

Vi.k+Ui,k-t=O; fork=2andn+2. (8) 

(c) RadiaI momentum equation 

4 Vi.j _ 1 + b; Vi,j + 4 Vi,, + 1 

= -(Pk-Pk_t)/AR+y/; forj= 2,n 

v;;, =O; forj= 1 andn+l and Pk--Pk_, =O; 

fork = 2 and n+2. (9) 

(d) Energy equation 

a;T,.k_I+b;7;k+c;Ti,~,+, = y;; fork = 2,n 

Ti., - Ti,&+, = Q(AR) ; for k = I 

and I;.* - I;:.k_l =O; fork=n+2 

T/<, - Ti.k-, = 0; for k = n+2 (at the outer wall). 

(IO) 

(e) Integral Continuity equation 

I. Elliptic equarions (case I) 
F ,+, z = (RV);;; ,/ZR,AR; E, = I/Re,(M’)’ 
G I* 1.1 = (ZR),, ,,z/R,(AR)‘; H,” = (2R), R,, vz(AR)’ 

(a) Energy equation (2 d k d n+ I) 

a;- = -(FfG/‘Pe)t_,iZ 
b; = V”h-‘/AX-a;+, -c;-, 

d = (F-G/f’&+ ,, 2 

& = (UT),- ,zlAJ’ 

(b) Axial momentum equation (2 d k Q n+ 1) 

a; = -(F+G/Re),_ ,,* 
b ; = U$-‘/AX-Gay,,,-c$-,+E,_, 
4 = (F-GIW,. 8,: 
&i” = E,(Vi+,,- fJ,-~~)fL,Vi-,_t 
J$ = (Gr, T/4Q Re2),z + U,‘_ ,k/AXty$‘P 

(c) Radial momentum equation (2 6 j $ n) 

a; = -(H,Y > +F,_ ,J 
6’=U {AX-i-F ,+~,z--f;-~,z+H; +H; 
c; = -i&,;,,-F,+,,tf 
x’; = (VU- ,,,/2(AX) 

(d) Continuity equation (2 d k Q n+ I) 

4 = -(pR)~-,lR~-,,~(AR) 
& = (PRLIRI- i&R) 
c; = 0 
Ic;- = NPt’),.L I:2 -(pWt- ,.lr- ,‘>lAX 

II. Parabolic equations (case II) 
v;- I = v,_ 1.i; v;- f = Fi- ,., 
E, = 0 

where f; =m. (11) 
Pi* 

The coefficients 4, bf’, cf, and yf (I = jor k and # = t, 
I(, v, or c) in equations (7)-(11) for each case (eiliptic, 
parabolic, and boundary layer) are listed in Table 1. 

In the calculation grid, the axial velocity com- 
ponents, pressure and temperatures were evaluated 
at the center of each control volume while the 
radial velocity components were evaluated at the con- 
trol volume boundaries. The sequence of cafculation 
steps for cases II and III is as follows. 

III. Boundary layer equations (case III) 

vz-’ = v,-z,,; v;-’ = V$-$., 
&=&=&=4=j$=O 

Step 2. The axial momentum equation (equation 
(8)) was solved iteratively in conjunction with the 
integral continuity equation (equation (11)) for the 
axial velocity profiles ( Ui,k ; k = 1, tI + 2) and an aver- 
age value of the pressure gradient, (CP. C.Qi. 

Step 3. The radial momentum equation (equation 
(9)) coupled with the continuity equation (equation 
(7)) was solved iteratively for the radial velocity (V,,; 
j=l,nfI)andpressureprofiles(P,;k=1,n+l). 
The iteration scheme used to solve equations (7) and 
(9) is very similar to the guess correction scheme sug 
gested for pressure correction by Patankar and Spald- 
ing [18]. 

This compIetes the calculations at one axial 
location. The calculation procedure, then, marches to 
the subsequent downstream axial location. At each 
axial location the criterion for incipient fIow insta- 
bility was examined ; the axial location at which this 
criterion was satisfied was taken as .+. 

In cases II and III the calculations were terminated 
Step 1. At each axial location equation (IO) was once xrc was reached, while in case I additional sweeps 

solved for the temperature profile (r, ; k = 1, II + 2). of the calculation domain were incorporated to 
These temperatures were used to determine the fluid increase the accuracy of the solution. In each sweep 
thennophysical properties for updating various the same calculation procedures (steps 1-3) were 
dimensionless numbers (Re,, Pek) and also evaluating repeated until the corrections for x, and the axial 
the buoyant force term, y& in equation (8). vefocity profik became very small (Xz - Xg- ’ < AX 
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FIG. 2. Comparison of model predictions of X, for cases I-III with the experimental data for buoyancy 
assisted flow of water in a vertical annulus having a diameter ratio of 2. 

and Urn- U”- ’ < 0.001). The calculation procedure 
in case I was initiated by using the model predictions 
of temperature, axial and radial velocities, and press- 
ure profiles for case II as the starting point during 
the first sweep. The coefficients in equations (7)-( 10) 
were evaluated and steps 1-3 outlined above were 
carried out to obtain more accurate estimates of xr, 
and U, If, T, and P. 

The accuracy and convergence of the results 
obtained using the marching solution scheme de- 
scribed above were very sensitive to the axial and 
radial step widths [ 181. Because conducting a full sen- 
sitivity analysis of convergence, stability and accuracy 
of the solution scheme was beyond the scope of this 
study, a number of test cases were performed to quan- 
tify the effect of varying the control volume widths, 
AX and AR, on the accuracy of the results as well as 
the computation time. Results revealed that for the 
range of geometrical parameters selected in the study 
(E = 1.2-2.0 and Di = 1.27-2.25 cm) a AX of 0.05 and 
AR of 0.01 were suitable. When these values were 
reduced to 0.025 and 0.005, respectively, the com- 
putation time increased by 125%, with negligible 
effect on the numerical results. Hence, subsequent 
calculations were carried out using the former values 
of AX and AR. 

RESULTS AND DISCUSSIONS 

The accuracy of the model was verified by com- 
paring its predictions of xlr with the experimental data 
of ref. [4], for both buoyancy assisted and opposed 
flows, and those of Sherwin and Wallis [ 141 for buoy 
ancy opposed flow (see Figs. 2-4). In addition, the 
contributions of the axial momentum diffusion and 
of the radial momentum transfer were assessed by 
comparing the model predictions of case I with those 

of case II and case III, using the parabolic equations 
and the boundary layer equations, respectively. 

As shown in Figs. 2 and 3, the model predictions of 
xlr in cases I and II are very similar and in reasonable 
agreement with the experimental data of ref. [4] for 
buoyancy assisted flow (within + 10%). However, for 
buoyancy opposed flow the experimental values of x,r 
are up to 15% higher than the model predictions (see 
Fig. 3). These higher experimental values of .r,r can be 
attributed to the experimental uncertainties, up to 
20%, in measuring x, for buoyancy opposed flow. 
These uncertainties were due to the fact that while the 
onset of instability occurred near the inner heated wall 
the dye solution was injected near the outer wall, 
hence delaying the detection of flow instability. On 
the other hand, in the buoyancy assisted flow exper- 
iments the uncertainties in xr, measurements were 
smaller than for downflow (+ 10%) because the onset 
of flow instability occurred near the outer wall where 
the dye solution was injected into the flow. 

Figure 4 compares the model predictions for xr, 
with the experimental data of Sherwin and Wallis 
[ 141 for buoyancy opposed flow in a ‘vertical annulus 
having a diameter ratio of 3.0. Because the inlet water 
temperature for the individual data points was not 
reported, a point-by-point comparison with the data 
was not possible. Instead the model predictions of xrr 
in Fig. 4 were obtained by assuming constant water 
properties. As the results in Fig. 4 demonstrate, while 
the model predictions in cases I and II were in reason- 
able agreement (+ 12%) with the experimental data, 
those obtained using the boundary layer approxi- 
mation (case III) were consistently lower, with the 
difference increasing with decreasing xfr (or increasing 
Gr,/Re). 

In Figs. 2-4, the almost identical predictions of x, 
by both the elliptic and parabolic equations (cases I 
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FIG. 3. Comparison of model predictions of X, for cases I-III with the experimental data for buoyancy 
opposed flow of water in a vertical annulus having a diameter ratio of 2. 
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0 

FIG. 4. Comparison of model predictions of X, for cases I-III with the experimental data for buoyancy 
opposed flow of water in a vertical annulus having a diameter ratio of 3. 

and II) demonstrate that theeffect ofaxial momentum 
diffusion on .vt, is negligible. However, from the 
numerical solution point of view the elliptic form of 
governing equations was preferred because the solu- 
tion remained stable until the matrix equation became 
singular a few centimeters downstream of xrr. 

The effect of radial momentum transfer on xrr was 
determined by comparing the model predictions for 
case III with those for case I (see Figs. 2 and 3). As 
Figs. 2 and 3 indicate, the boundary layer solution 
(case III) underpredicts xr, for buoyancy assisted and 
opposed flows by 2040% and 25-4%, respectively. 
These lower values of xlr are due to the fact that the 

boundary layer equations neglect the contribution of 
radial momentum transfer to the development of the 
velocity fields, which could be significant at higher 
Gr,/Re ratios. As shown in Figs. 5 and 6, the difference 
between the axial velocity profiles in cases I and III is 
negligible near the entrance (X = 2.25 and 12.5 in 
Figs. 5 and 6), where the effect of buoyant forces is 
insignificant. However, as the contribution of buoyant 
forces increases with axial distance, the difference 
between the axial velocity profiles in cases I and III 
increases. As Figs. 5 and 6 show neglecting the radial 
momentum transfer in case III overpredicted the 
values of the axial velocity in the region adjacent to 
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Case Eqns. X,, 

0; 0.4 O.'B 0.; Ob 0.; 
Dimensionless Radius, R 

FIG. 5. Comparison of model predictions of axial velocity at various axial locations for cases I-III for 
Gr,lRe = 6150. 

I 
x=375 Buo 

Iao x 
ancy Assisted Flow 

ux Inner Wall. Adiabatic Outer Wall 
D. = 121 cm, c=2.0 
t.’ =294.3KFk,=500 

? 2 cP@e = 4753 

“I ’ 0 ol oi 0.; 0.i 
Dirmsio~~ Raiks, R 

0.7 0.2 0.9 

FIG. 6. Comparison of model predictions of axial velocity at various axial locations for cases I-III for 
GrJRe = 4753. 

the heated wall, hence resulting in earlier prediction 
of incipient instability. The insert in Fig. 5 illustrates 
that the axial velocity profile at the location of incipi- 
ent instability, which met the onset of flow instability 
criterion (aU/aR = 0 @R = l), was identical for 
cases I and III. As Fig. 6 shows, at lower Gr,/Re values 
(GrJRe < 5000) the deviation between the model pre- 
diction of xtr for cases I and III is less than 7%, but 
is as much as 50% at a Gr,/Re of 40 000. In summary, 

the results presented in Figs. 2-6 clearly show that 
while the contribution of the axial diffusion of 
momentum to xR is insignificant, the contribution of 
the radial momentum transfer is important, par- 
ticularly at higher Gr,/Re values. At these values either 
the elliptic or the parabolic form of equations should 
be used to describe the flow field. 

In the following sections a parametric analysis is 
conducted using the elliptic form of the governing 
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equations (case I) to assess the effects of inlet par- 
ameters. operating parameters, and geometrical 
parameters on xrr. 

Effect of inlet axial relocity profile 
The effect of inlet axial velocity profile on xrr is 

assessed by assuming a flat axial velocity profile at the 
inlet of the annulus and varying the length of the non- 
heated calming section, Lnh. that preceded the heated 
part of the annulus. The value of Lnh is varied from 
lOD, to 5000, ; which at Re, of 500 corresponds to 25- 
99% hydrodynamically developed isothermal velocity 
profiles at the inlet to the heated section, respectively. 

Results in Fig. 7 show that for Gr,/Re values larger 
than 5000 varying the inlet axial velocity profile only 
insignificantly affects the model predictions of xR, 
which increase with Rein. However, for Gr,/Re < 5000 
the values of xrr are independent of both the inlet 
velocity profiles and Rein. For GrJRe values less than 
5000 very few cases were performed because the 
associated values of xrr were very large, requiring large 
computational effort. The results delineated in the 
insert in Fig. 7 explain the lack of dependence of xrr 
on the axial velocity profile at the inlet of the heated 
section. As this figure shows, although the axial vel- 
ocities at the entrance corresponding to Lnh = 0 and 
200 are distinctly different due to the effect of buoy- 
ancy they became identical for X> 15 resulting in 
identical predictions of xfr for both cases. 

Eflect of operating parameters 
The operating parameters of interest in the present 

study are Gr,,Re, and inlet temperature. The model 
predictions for both buoyancy assisted and opposed 

flows are plotted in Figs. 8 and 9, respectively. As is 
evident from these figures when the water properties 
are evaluated at the local bulk temperature, the model 
predictions of xrr for a wide range of operating con- 
ditions collapse into essentially a single line. 
Conversely, when the water physical properties are 
evaluated at the inlet temperatures the values of xr, do 
not collapse into a single line. 

Figures 8 and 9 suggest that for given Re and Pr 
the values of xrr increase with decreasing Gr,/Re until 
a critical value (Gr,),, below which the flow is uncon- 
ditionally stable (xr, -+ cc). The values of (Gr,/Re),, 
for buoyancy assisted and opposed flows were found 
to be 3850 and 1500, respectively (see Figs. 8 and 
9). These values are in good agreement with those 
reported by Sherwin [I21 for fully de\-eloped flows. 
Also, the results in Figs. 8-10 show that the values of 
(Gr,/Re), are independent of not only the inlet 
and operating conditions but also the geometrical 
parameters. 

Effect of geometrical parameters 
To examine the effects of both the equivalent diam- 

eter. D,. of the annulus and the annulus ratio, E, on 
X,, a parametric analysis was performed using the 
geometrical parameters shown in Fig. 10. As this 
figure shows, the values of X, increase as either Di or 
the annulus ratio increases. The insert in Fig. 10 also 
shows that the effects of various geometrical par- 
ameters can be accounted for by plotting the results 
in terms of x,/D, vs Gr,,/(E + 1) Re. Consequently, these 
dimensionless quantities are used in the next section 
to develop a general criteria for incipient flow insta- 
bility in annular geometries (see Fig. II ). 

0 

I 
Buoyancy Assisted Flow 
!3fectofhktV*ityFdile 

--.a. =500 
--R~e;=750 

FIG. 7. Effect of inlet axial velocity profile on the location of incipient flow instability for buoyancy assisted 
flow in a uniformly heated vertical annulus having a diameter ratio of 2. 
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*MO xa. 

+ 500 In. 

0 10 al 30 40 50 60 70 80 90 100 110 

@e pr/x,> 

FIG. 8. Effect of operating parameters on the location of incipient flow instability for buoyancy assisted 
flow in uniformly heated vertical annulus having a diameter ratio of 2. 

OROh= 
. Reh = MO 
0 Re,=lOOQ 

- -swiL 1969 

FIG. 9. Effect of operating parameters on the location of incipient flow instability for buoyancy opposed 
flow in uniformly heated vertical annulus having a diameter ratio of 2. 

Flow instability criteria for annular geometries 
Based on the model predictions of x, for both buoy- 

ancy assisted and opposed flows using various oper- 
ating and geometrical conditions, as well as the exper- 
imental data of refs. [4, 141, the following criteria for 
incipient flow instability were suggested : 

[GrJRe- (GrJRe),,] = A(Re Pr D,/x~,)‘(E+ 1) 

(12) 

where (GrJRe),, = 3850, A = 0.18, and b = 2.32 for 
upflow and (GrJRe), = 1500, A = 15.15, and 
b = 0.90 for downflow. 

These criteria are compared in Figs. 8 and 10 with 
the model predictions for buoyancy assisted flows for 
different operating and geometrical parameters, respec- 
tively. A similar comparison of these criteria with the 

model predictions and the experimental data for buoy- 
ancy opposed flow is shown in Figs. 9 and 11, respec- 
tively. Figure 11 also provides a comparison of these 
criteria with the experimental data for buoyancy assis- 
ted flow. Note the good agreement between the data 
and equation (12) (within & 15 and f 11% for buoy- 
ancy opposed flow and assisted flow, respectively). 

Based on this agreement with the experimental 
data, equation (12) is proposed to demarcate laminar 
and buoyancy induced turbulent flows in vertical 
annuli having a uniformly heated inner wall and an 
adiabatic outer wall. For a selected Graetz number 
(Re Pr 0,/x& the flow would be either stable or 
unstable depending on whether the Gr,/Re values are 
lower or higher than those predicted by equation (12), 
respectively. 
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FIG. IO. Effect of geometrical parameters on the location of incipient flow instability for buoyancy assisted 
flow in uniformly heated vertical annuli. 

FIG. 11. Comparison of the criteria for onset of flow instability with the experimental data for both 
buoyancy assisted and opposed flows. 

CONCLUSIONS assisted and opposed flow, and Sherwin and Wallis 
[ 141 for buoyancy opposed flow. 

A two-dimensional numerical model based on the To assess the effects of axial momentum diffusion 
elliptic Navier-Stokes equations was developed to and radial momentum transfer on the accuracy of the 
predict the location of incipient instability, X,, for model prediction of xf,, the research also solved the 
low Reynolds number water flows in vertical annuli. parabolic form of the Navier-Stokes equations and 
The model predictions for ,I’, were in good agreement the boundary layer equations for _rfr. Results showed 
with the experimental data of ref. [4], for buoyancy that while the boundary layer approximation can 
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adequately describe the flow field at very low Gr,,/Re 

values, it significantly underestimates xfr at higher 
Gr,/Re because of neglecting the radial momentum 
transfer. Conversely, the results revealed that the axial 
diffusion of momentum only insignificantly affects the 
axial velocity profiles and, hence, the prediction of the 
location of incipient tlow instability. In conclusion, 
either the elliptic or parabolic form of Navier-Stokes 
equations would accurately predict the onset of flow 
instability. However, the former is preferred because 
the numerical solution remained stable until the 
matrix equations became singular a few centimeters 
downstream of xrr. 

A general criteria (equation (12)) for predicting the 
onset of flow instability in vertical annuli having an 
isoflux inner wall and an adiabatic outer wall was 
developed based on both the model predictions and 
the experimental data of ref. [4, 141. These criteria 
were in good agreement with the experimental data of 
ref. [4] and of Sherwin and Wallis [14] for annular 
ratios of 2.0 and 3.0, respectively. Equation (12) is, 
therefore, recommended for demarcating the laminar 
and buoyancy induced turbulent flows in vertical 
annuli. 
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INSTABILITE INDUITE PAR FLOTTEMENT POUR DES ECOULEMENTS 
LAMINAIRES DANS UN ESPACE ANNULAIRE VERTICAL-II. MODELE DU 

DEVELOPPEMENT ET ANALYSE 

RCunG-Un modile num&ique bidimensionnel, bas6 sur les tquations elliptiques de Navier-Stokes. est 
developp6 pour pr6dire l’emplacement de l’apparition de I’instabiW. .yfr+ dans des 6coulements d’eau P 
faible nombre de Reynolds dans des espaces annulaires verticaux. Les r&hats montrent que si la qua&t& 
de mouvement radiale est nkgligb les valeurs de xrr sont sous9vaWes de 45% environ pour des valeurs 
Clev6es du rapport Gr,/Re. Par contre la diffusion axiale de quantite de mouvement affecte peu le champ 
des vitesses et par suite la prtision du calcul de xrr. Les resultats de l’analyse paramitrique etudiant les 
effets de diverses conditions op&atoires et des paramitres gbomCtriques sent utilis&s pour divelopper des 
c&&es gknbraux de prkdiction de l’apparition de I’instabiW de l’6coulement dans des espaces annulaires 
verticaux. Ces crittres conviennent g + 10 et f 15% aux don&s exp&rimentales, respectivement pour des 

6coulements aid& ou contra&s par le flottement. 
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AUFTRIEBSINDUZIERTE INSTABILITWT EINER LAMINAREN STR6MUNG IN 
EINEM SENKRECHTEN RINGKANAL-II. MODELLBILDUNG UND ANALYSE 

Zusummenhssung-Es wird ein zweidimensionales numerischen Model1 vorgestellt. das auf den elliptischen 
Navier-Stokes-Gleichungen aufbaut und den Ort des Einsetzens der Instabilitat (.ud in einem senkrechten. 
wasserdurchstriimten Ringkanal (kleine Reynolds-Zahlen) berechnet. Die Ergebnisse zeigen, daD .rlr durch 
Vernachlissigen des radialen Impulses bei groBen Werten von Gr,iRe urn bis zu 45% zu klein berechnet 
wird. Andererseits beeinfluBt der axiale lmpuisaustausch das Geschwindigkeitsfeld nur unwesentlich und 
damit such die Genauigkeit der Berechnung von .qr. In einer Parameteruntersuchung werden die Einfliisse 
unterschiedlicher Arbeitsbedingungen und unterschiedlicher geometrischer Bedingungen untersucht. Mit 
Hilfe des Ergebnisses lassen sich allgemeine Kriterien fiir die Berechnung des Einsetzens der Strii- 
mungsinstabilitlt in senkrechten Ringkanalen entwickeln. Versuchsergebnisse fur auftriebsunterstiitzte 
und auftriebsbehinderte Striimungen konnen mit Hilfe dieser Kriterien innerhalb + IO bzw. 2 15% 

wiedergegeben werden. 

HEYCrOtiWiBOCTb JIAMWHAPHbIX TEqEHMn B BEPTMKA.ilbHbIX KOJIbL[EBbIX 
KAHMAX, BLBBAHHAII l-IOjJ’bEMHbIMM CWJIAMH-II. PA3PAliOTKA 

MATEMATHYECKOfi MOfiEJIM M AHAJIM3 PE3YJIbTATOB 

W-Ha oc~one 3~Hmww~r~x YpaBHCHIfii Haabe<Torca pazipa6oTaiia nByMepHan YHWleHHaR 
MOLWlb DJIX OllpUWJlCHHx MCCTa B03HHlCaHOBCHHli Hej'CTOiilmBOCTH Xlr B BOlle IlpH MaJlbIX 3HaPeHHIIX 

'IEiCJla PefiHOJIbJWa B BCpTHKaRbHbIX KOJlbWBblX KaHBRaX. PC3j'JIbTaTbI lIOKa3bIWlOT.'ITO npCHl@CXW 

HHepaZ[HBnbHblHHMnynbcOMMCnOTnpHBeclll K3aHH)YCHHI03HaYeHHBXI, Ha 45% UpHBbICOKHX3Ha'W 
HHRX Gr,/Rr. AKCHUlbHaK %&&'3HK AMllj'JIbca JlHUlb HC3Ha'iHTCJlbHO BJIHWT Ha IlOJlR CKOpOCTCii H, 

CJIe~OBaTUlbHO,HaTOYHOCTb pac'lffa 3HaWHHxX,,. Pe3ynbTaTba napahteqxiwcroro aitam3a ~+#~CKTOB 

pa3nHWblXpa6o'fHx yCnOBHii H~OM~HSeCKHX~a~MCT~BHC~O~b3ylOTCR~x~~aHOB~CHHx 06utsix 
KpHTqp"eB O,,pJ,eneHHI HeyCTOihBCCTti TeYeHHR B BepTtfKZUlbHbIX KOnbUeBbIX KaHanaX.PaCXOWeHHK 

Mexny ycraHoBneHHb#MH KpHTCpHeMH H 3KCtIepHMeHTaJIbHMMH IIaHbIMB COCTBBIIRWT 4 10 H 4 15% 
COOTBeTCTBeHHO JUIK Te'leHHti C COBIIWWOUWM H llpOTHBOllOJIOXCHbIM LlekTBHeM lIOR'%MHbEX CHJI U 

BbIHY)IUleHHOI'OTCSCHHII. 


