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Abstract—A two-dimensional numerical model, based on the elliptic Navier—Stokes equations, is developed
to predict the location of incipient instability, x;, in low Reynolds number water flows in vertical annuli.
Results show that neglecting the radial momentum can underpredict the values of x;, at high Gr,/Re values
by as much as 45%. Conversely, the axial momentum diffusion only insignificantly affects the velocity
fields and, hence, the accuracy of predicting x;. The results of a parametric analysis investigating the effects
of various operating conditions and geometrical parameters is used to develop general criteria for predicting
the onset of flow instability in vertical annuli. These criteria are within + 10 and 4 15% of the experimental
data for buoyancy assisted and opposed flows, respectively.

INTRODUCTION

CHARACTERIZATION of heat transfer to low Reynolds
number flows in vertical channels is complicated by
the introduction of buoyant forces at high heat flux-
to-mass flow ratios (Gr,/Re). At higher Gr,/Re values,
the variations in fluid viscosity and density across the
boundary layer become sufficiently large, causing
significant distortion in the velocity fields and initiat-
ing transition from stable laminar flow to turbulent
flow [1, 2]. Such transition enhances the rates of heat
transfer downstream of the location of incipient insta-
bility, also referred to as the location of incipient flow
transition, x {3, 4].

Numerous experimental and theoretical studies
investigating the transition from stable laminar flow
to buoyancy induced turbulent flow have been
reported for pipes [2, 3, 5-7], channels formed by
parallel plates [8, 9], rod bundles [10, 11], and vertical
annuli [4, 14, 15]. The theoretical investigations of
buoyancy induced instability have only focused on
relating the conditions for onset of transition to the
magnitude of the distortion in the axial velocity
profile. The axial location of incipient instability was
taken to be equal to that at which both the radial
gradient of the axial velocity and the axial velocity
corresponding to some radial coordinate vanish.
However, the accuracy of this criterion depends on
the accuracy of calculating the axial velocity profiles
upstream of x;,.

Most studies have either assumed fully developed
flow [12, 13] or employed the boundary layer approxi-
mation [14, 15] to calculate the axial velocity profile
upstream of x;. Sherwin [12] obtained an estimate for
minimum Gr,/Re values required to initiate transition
using the fully developed flow approximation. The

validity of this approximation is limited to very long
test sections and low values of Gr,/Re. El-Shaarawi
and Sharan [15] solved the constant property bound-
ary layer equations to predict x; for laminar upflow
of air in a vertical annulus with an isothermal inner
wall. Similar equations were solved by Sherwin and
Wallis [14] to predict x, for laminar downflow of
water in a vertical annulus with an isoflux inner wall.
Although good agreements were reported between the
boundary layer solution and the experimental data at
low Gr,/Re values {14], theoretical predictions were
consistently lower at higher Gr,/Re values. A similar
trend was also reported for laminar upflow in tubes
[6]. This disagreement between the experimental data
and the boundary layer solution at higher Gr,/Re
values can be attributed to the following simplifying
assumptions in the boundary layer approach: radial
momentum transfer is negligible (¢p/¢r = 0), axial
diffusion of momentum is negligible, and the fluid
properties except for density are temperature
independent.

To account for these shortcomings of the boundary
layer approximation, this research developed a
numerical model that solves the complete set of elliptic
Navier-Stokes equations with temperature dependent
fluid properties. The accuracy of the model was veri-
fied by comparing the model predictions of x;, with
the experimental data of ref. [4] for both buoyancy
assisted and opposed flows and those of ref. {14] for
downflow of water in vertical annuli. Effects of radial
momentum transfer and axial diffusion on x; were
quantified by comparing the model predictions based
on elliptic governing equations with those obtained,
as a part of the study, using the parabolic form of
governing equations and the boundary laver equa-
tions. To examine the effect of inlet parameters, oper-
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NOMENCLATURE

A, cross sectional flow area [m’] u axial velocity {m s™']
C, specific heat [kJ kg™ '] U  dimensionless axial velocity, u'u;,
D  diameter [m] v radial velocity [m s~ ']
D,  equivalent hydraulic diameter, D,— D, [m] vV dimensionless radial velocity, v/v,,
g acceleration due to gravity, 9.81 ms—?2 X axial distance measured from the entrance
Gr, Grashof number, g8D2g/vk of the heated section in the direction of
k thermal conductivity [W m~'K~'] or the flow [m]

index used in equations (7)—(11) X dimensionless axial distance, x/D,
I index used in equations (7)—(11) AX  axial step width.
L length of the heated section [m]
L., length of non-heated calming section (D,) Greek symbols
m  number of sweep . . . 1

, -1 B coefficient of volumetric expansion [K ']
m  mass flow through the annulus [kg s~ '] .
€ annulus ratio, D,/D;
Nu  Nusselt number, ¢D /k(z, —t,) L —2 4
u dynamic viscosity of water [kgm~?s7]
D pressure [Pa]) : A P
. . ) v kinematic viscosity [m®s~']

P dimensionless pressure, p/pu;, density of water [kg m~]
Pe  Peclet number, Re- Pr p y ater 1kg
Pr Prandtl number, uC,/k
q surface heat flux (kW m~7 Subscripts
Q dimensionless heat flux, gr./k(te.— tn) b water bulk temperature
r radial location or radius [m] cr  critical value
R dimensionless radial location, fr location of incipient instability

(r—r)/(ro—r) i inner heated stainless steel tube
AR radial step width in  inlet of the test section
Re  Reynolds number, mD [A.u max maximum axial velocity
t temperature [K} o outer wall of the annulus
T dimensionless temperature, sat  saturation (or boiling point)

(t—ti)/ (teae— tin) w heated wall.

ating parameters, geometrical parameters and surface
heat flux on x,, a parametric analysis was conducted.
Based on the results of the parametric analysis as well
as the experimental data [4, 14], a general criteria for
the onset of flow instability in both buoyancy assisted
and opposed flow of water in vertical annuli were
developed. The next two sections describe the govern-
ing equations of the model and the numerical scheme
used in solving these equations.

PHYSICAL MODEL

The problem under consideration is that of a steady,
two-dimensional, axisymmetric, developing laminar
flow of water in vertical concentric—ircular annuli.
These annuli have a uniformly heated inner wall and
an insulated outer wall. The basic case analysis
assumed uniform fluid velocity and temperature at
the inlet of the test section. Because of the large tem-
perature variation across the annular gap at high
Gr,/Re values, the model treats the fluid viscosity as
temperature dependent, while the variations in fluid
density were handled using the Boussinesq approxi-
mation. The steady-state governing equations and the
boundary conditions, in their conservative form, are
given below.

Governing equations

(a) Continuity
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1 2(pRV) 0
oX o

R 4R

(b) Axial momentum
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FIG. 1. Staggered grid used to discretize the governing equations.

(e) Integral continuity

' e+1
L pURAR = ip;, (—:f> (5)

4

Boundary conditions
U=10, V=0,and T=0

@ X = O (entrance) (6)
U=0, V=0,and 6T/0R = —Qi(X)

@X>0; R=0(nnerwall) (67
U=0, V=0,and dT/0R=0
@X>0; R=1(outerwall). (6™

To assess the effects of axial diffusion and radial
momentum transfer on the accuracy of the model
predictions for x;,, the model results for three cases,
each representing a set of simplifying assumptions,
were compared with the experimental data. In case I,
the governing equations in their present form (equa-
tions (1)—(6)) were solved, while in case II the para-
bolic form of the governing equations, obtained by ne-
glecting the axial diffusion term in equation (2), were
solved. Case III assumed a boundary layer flow and
the velocity and temperature profiles were obtained
from the solution of the boundary layer equations.
These equations were deduced from equations (1)-
(5) by neglecting radial momentum transfer (equation
(3)) and axial diffusion (last term in equation (2)).

The governing equations for each of these cases,
subjected to the prescribed boundary conditions

(equation (6)), were solved for the velocity and the
temperature profiles as functions of the axial location.
The axial location of incipient instability, x,, was
defined as that where the axial velocity as well as the
radial gradient of the axial velocity near one of the
walls vanish (U=0 and dU/6Rx=0; @ R=0 for
downflow or @ R =1 for upflow). Because the ana-
lytical solution of equations (1)-(6) was unattainable
a numerical scheme, outlined in the following section,
was emploved to solve these equations for all three
cases.

NUMERICAL SCHEME

Although several numerical schemes have been pro-
posed to solve the elliptic form of Navier-Stokes equa-
tions [16, 17], they are not adoptable to the present
problem because they require specification of the
entire domain of interest and the outflow boundary
conditions a priori. In the present problem because
X is not known beforehand neither of these require-
ments could be met. The proposed numerical scheme
employed an iterative, marching, finite difference
scheme, which is similar to that proposed by Patankar
and Spalding [18) for solving the parabolic transport
equations. In addition, the current scheme solves the
axial diffusion terms in equation (2) (¢°U/EX?) using
a special first-order finite differencing scheme ; higher
order of accuracy was obtained by incorporating
additional sweeps of the calculation domain.

The proposed numerical scheme divided the cal-
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culation domain (0 K R<! and 0 € X € X;) into
several control volumes using a staggered grid struc-
ture [19] (see Fig. 1). The governing equations {equa-
tions (1)-(6)) were then reduced to a set of linearized
finite difference equations by integrating them over
the respective control volumes.

(a) Continuity equation
@V + 5Vt Vi =i, forj=2n
V,;=0; forj=1andn+l. 0
(b) Axial momentum equation
@Gy FBEU U
= —~JP/OX,+yi; fork=2n
Up+Uy_.,=0; fork=2andn+2. (8)
(c) Radial momentum equation
Vi1 ViV

= —(P.— P )}JAR+y;; forj=2n

Vij=0; forj=1landn+1and P,—P,_,=0;
for k =2 and n+2. 9)
(d) Energy equation
AT 1+ T+ Tigwr = yi; fork=2n
Tie=Tier = QAR); fork =1
and T~ Ty =0; fork=n+2
T~ T =0; for k = n+2 (at the outer wall).
(10)
(e) Integral continuity equation
e2)- [ 5
where f = M {an

n

The coefficients af, b?, c?,and yf (/ = jorkand ¢ = ¢,
u, v, or ¢) in equations (7)—(11) for each case (elliptic,
parabolic, and boundary layer) are listed in Table 1.

Method of solution

In the calculation grid, the axial velocity com-
ponents, pressure and temperatures were evaluated
at the center of each control volume while the
radial velocity components were evaluated at the con-
trol volume boundaries. The sequence of calculation
steps for cases II and III is as follows.

Step 1. At each axial location equation (10) was
solved for the temperature profile (T;,; k = 1, n+2).
These temperatures were used to determine the fluid
thermophysical properties for updating various
dimensionless numbers (Re,, Pe,) and also evaluating
the buoyant force term, y{, in equation (8).

D. V. Rao and M. S. EL-GENK

Table 1. Tri-diagonal coefficients used in equations (7)-(10)

I. Elliptic equations {case 1)
Fii2 = (RV)3] z/?-R:ARj E; = l/Re(AX)’
Grorz = QR o/RAAR) . HF = QR), R .»(AR)’

(a) Energyequation 2 <k <n+ 1)

a, = ~(F+G/Pe);_y1»

b = UTI’/AX—aiH-*cz_.
& = (E—=G/Pe) s\
Ye=(UT),_ /80X

{b) Axial momentum equation 2 <k <n+1)

ay = —(F+G/Re),.\

by = UK AX—al, ~ci_\+Ei.

&= (F~G/Re} 1

WP = EUi— VU +E_ Ui
Vi =(Gry TIAQ Re®), + UL 1/AX +y2°

(c) Radial momentum equation 2 < j < n)

& =~(H +F_,)
b = U JAX+ F o~ F_ 1o+ Hf +H]
& =—(Hi—F)
x5 = (UV)i_,;/2(AX)
(d) Continuity equation 2 <k < n+1)
a; = —{pR)e_1/Re.12(AR)
e = (PR /R 12(AR)
¢ =0
X = (P12 = (pU)ic v 12]AX
1. Parabolic equations (case II)

V:'ﬁ—! =V V:T; =V _u
E =0
II1. Boundary layer equations (case III}
o= Vi Vit =V, .

Step 2. The axial momentum equation {equation
{(8)) was solved iteratively in conjunction with the
integral continuity equation (equation {11)) for the
axial velocity profiles (U, ; k = 1, n+2) and an aver-
age value of the pressure gradient, (CP.¢X),.

Step 3. The radial momentum equation {equation
(9)) coupled with the continuity equation (equation
(7)) was solved iteratively for the radial velocity (V,;;
j=1, n+1) and pressure profiles (P; k=1, n+1).
The iteration scheme used to solve equations (7) and
(9) is very similar to the guess correction scheme sug-
gested for pressure correction by Patankar and Spald-
ing [18].

This completes the calculations at one axial
location. The calculation procedure, then, marches to
the subsequent downstream axial location. At each
axial location the criterion for incipient flow insta-
bility was examined ; the axial location at which this
criterion was satisfied was taken as x.

In cases II and III the calculations were terminated
once x;, was reached, while in case I additional sweeps
of the calculation domain were incorporated to
increase the accuracy of the solution. In each sweep
the same calculation procedures (steps 1-3) were
repeated until the corrections for x; and the axial
velocity profile became very small (X7 ~X7~! < AX
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F1G. 2. Comparison of model predictions of X;, for cases I-IIl with the experimental data for buoyancy
assisted flow of water in a vertical annulus having a diameter ratio of 2.

and U™—U"""' < 0.001). The calculation procedure
in case I was initiated by using the model predictions
of temperature, axial and radial velocities, and press-
ure profiles for case II as the starting point during
the first sweep. The coefficients in equations (7)~(10)
were evaluated and steps 1-3 outlined above were
carried out to obtain more accurate estimates of x;,
and U, V, T, and P.

The accuracy and convergence of the results
obtained using the marching solution scheme de-
scribed above were very sensitive to the axial and
radial step widths [18]. Because conducting a full sen-
sitivity analysis of convergence, stability and accuracy
of the solution scheme was beyond the scope of this
study, a number of test cases were performed to quan-
tify the effect of varying the control volume widths,
AX and AR, on the accuracy of the results as well as
the computation time. Results revealed that for the
range of geometrical parameters selected in the study
(¢ =1.2-2.0and D; = 1.27-2.25cm) a AX of 0.05 and
AR of 0.01 were suitable. When these values were
reduced to 0.025 and 0.003, respectively, the com-
putation time increased by 125%, with negligible
effect on the numerical results. Hence, subsequent
calculations were carried out using the former values
of AX and AR.

RESULTS AND DISCUSSIONS

The accuracy of the model was verified by com-
paring its predictions of x;, with the experimental data
of ref. [4], for both buoyancy assisted and opposed
flows, and those of Sherwin and Wallis [14] for buoy-
ancy opposed flow (see Figs. 2-4). In addition, the
contributions of the axial momentum diffusion and
of the radial momentum transfer were assessed by
comparing the model! predictions of case I with those

of case II and case III, using the parabolic equations
and the boundary layer equations, respectively.

As shown in Figs. 2 and 3, the model predictions of
xg in cases I and IT are very similar and in reasonable
agreement with the experimental data of ref. [4] for
buoyancy assisted flow (within +10%). However, for
buoyancy opposed flow the experimental values of x,;
are up to 15% higher than the model predictions (see
Fig. 3). These higher experimental values of x,can be
attributed to the experimental uncertainties, up to
20%, in measuring x; for buoyancy opposed flow.
These uncertainties were due to the fact that while the
onset of instability occurred near the inner heated wall
the dye solution was injected near the outer wall,
hence delaying the detection of flow instability. On
the other hand, in the buoyancy assisted flow exper-
iments the uncertainties in x; measurements were
smaller than for downflow (+ 10%) because the onset
of flow instability occurred near the outer wall where
the dye solution was injected into the flow.

Figure 4 compares the model predictions for x;
with the experimental data of Sherwin and Wallis
[14] for buoyancy opposed flow in a vertical annulus
having a diameter ratio of 3.0. Because the inlet water
temperature for the individual data points was not
reported, a point-by-point comparison with the data
was not possible. Instead the model predictions of x;,
in Fig. 4 were obtained by assuming constant water
properties. As the results in Fig. 4 demonstrate, while
the model predictions in cases I and II were in reason-
able agreement (+ 12%) with the experimental data,
those obtained using the boundary layer approxi-
mation (case III) were consistently lower, with the
difference increasing with decreasing x; (or increasing
Gr,/Re).

In Figs. 2-4, the almost identical predictions of x,
by both the elliptic and parabolic equations (cases I
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FiG. 3. Comparison of model predictions of X, for cases I-III with the experimental data for buoyancy
opposed flow of water in a vertical annulus having a diameter ratio of 2.
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F1G. 4. Comparison of model predictions of X, for cases I~III with the experimental data for buoyancy
opposed flow of water in a vertical annulus having a diameter ratio of 3.

and II) demonstrate that the effect of axial momentum
diffusion on x; is negligible. However, from the
numerical solution point of view the elliptic form of
governing equations was preferred because the solu-
tion remained stable until the matrix equation became
singular a few centimeters downstream of x,.

The effect of radial momentum transfer on x; was
determined by comparing the model predictions for
case III with those for case I (see Figs. 2 and 3). As
Figs. 2 and 3 indicate, the boundary layer solution
(case 1IT) underpredicts x;. for buoyancy assisted and
opposed flows by 20-40% and 25-45%, respectively.
These lower values of x;, are due to the fact that the

boundary layer equations neglect the contribution of
radial momentum transfer to the development of the
velocity fields, which could be significant at higher
Gr,/Reratios. As shown in Figs. 5 and 6, the difference
between the axial velocity profiles in cases I and 111 is
negligible near the entrance (X = 2.25 and 12.5 in
Figs. 5 and 6), where the effect of buoyant forces is
insignificant. However, as the contribution of buoyant
forces increases with axial distance, the difference
between the axial velocity profiles in cases [ and 11
increases. As Figs. S and 6 show neglecting the radial
momentum transfer in case III overpredicted the
values of the axial velocity in the region adjacent to
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FiG. 5. Comparison of mode! predictions of axial velocity at various axial locations for cases I-I1I for
Gr,/Re = 6150.
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FiG. 6. Comparison of model predictions of axial velocity at various axial locations for cases I-1II for
Gr,/Re = 4753.

the heated wall, hence resulting in earlier prediction
of incipient instability. The insert in Fig. 5 illustrates
that the axial velocity profile at the location of incipi-
ent instability, which met the onset of flow instability
criterion (JU/OR=0 @ R =1), was identical for
cases [ and I11. As Fig. 6 shows, at lower Gr,/Re values
(Gr,/Re < 5000) the deviation between the model pre-
diction of x; for cases I and III is less than 7%, but
is as much as 50% at a Gr,/Re of 40000. In summary,

the results presented in Figs. 26 clearly show that
while the contribution of the axial diffusion of
momentum to X is insignificant, the contribution of
the radial momentum transfer is important, par-
ticularly at higher Gr,/Re values. At these values either
the elliptic or the parabolic form of equations should
be used to describe the flow field.

In the following sections a parametric analysis is
conducted using the elliptic form of the governing
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equations (case I) to assess the effects of inlet par-
ameters, operating parameters, and geometrical
parameters on Xy,.

Effect of inlet axial velocity profile

The effect of inlet axial velocity profile on xg is
assessed by assuming a flat axial velocity profile at the
inlet of the annulus and varying the length of the non-
heated calming section, L.,. that preceded the heated
part of the annulus. The value of L, is varied from
10D, to 500D, ; which at Re;, of 500 corresponds to 25—
99% hydrodynamically developed isothermal velocity
profiles at the inlet to the heated section, respectively.

Results in Fig. 7 show that for Gr,/Re values larger
than 5000 varying the inlet axial velocity profile only
insignificantly affects the model predictions of xi,
which increase with Re;,. However, for Gr,/Re < 5000
the values of x; are independent of both the inlet
velocity profiles and Re,,. For Gr,/Re values less than
5000 very few cases were performed because the
associated values of x;, were very large, requiring large
computational effort. The results delineated in the
insert in Fig. 7 explain the lack of dependence of x;
on the axial velocity profile at the inlet of the heated
section. As this figure shows, although the axial vel-
ocities at the entrance corresponding to L., =0 and
200 are distinctly different due to the effect of buoy-
ancy they became identical for X = 15 resulting in
identical predictions of x;; for both cases.

Effect of operating parameters

The operating parameters of interest in the present
study are Gr,/Re, and inlet temperature. The model
predictions for both buoyancy assisted and opposed

D. V. Rao and M. S. EL-GENK

flows are plotted in Figs. 8 and 9, respectively. As is
evident from these figures when the water properties
are evaluated at the local bulk temperature, the model
predictions of x;, for a wide range of operating con-
ditions collapse into essentially a single line.
Conversely, when the water physical properties are
evaluated at the inlet temperatures the values of x;, do
not collapse into a single line.

Figures 8 and 9 suggest that for given Re and Pr
the values of x; increase with decreasing Gr,/Re until
a critical value (Gr,),, below which the flow is uncon-
ditionally stable (x; -+ o). The values of (Gr,/Re).,
for buovancy assisted and opposed flows were found
to be 3850 and 1500, respectively (see Figs. 8 and
9). These values are in good agreement with those
reported by Sherwin {12} for fully developed flows.
Also, the results in Figs. 8-10 show that the values of
(Gr,/Re)., are independent of not only the inlet
and operating conditions but also the geometrical
parameters.

Effect of geometrical parameters

To examine the effects of both the equivalent diam-
eter, D,. of the annulus and the annulus ratio, ¢ on
X, a parametric analysis was performed using the
geometrical parameters shown in Fig. 10. As this
figure shows, the values of X, increase as either D, or
the annulus ratio increases. The insert in Fig. 10 also
shows that the effects of various geometrical par-
ameters can be accounted for by plotting the results
in terms of x4/ D, vs Gr,/(e+ 1) Re. Consequently, these
dimensionless quantities are used in the next section
to develop a general criteria for incipient flow insta-
bility in annular geometries (see Fig. 11).

400
O Buoyancy Assisted Flow
Effect of Iniet Velocity Profile
350 4
—Re,, = 500 16
~—Re, =750

300

:

:

g

Location of Incipient Instability, X,
8

Assited Flot
g:;':gbo. Gro/Re *:LS x 10
--L: = 200

08 1
% %

Stable Larninar - o e—e —a

Flow
o r r Y . r T r T r r

0  S000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000

Gro/Re

FiG. 7. Effect of inlet axial velocity profile on the location of incipient flow instability for buoyancy assisted
flow in a uniformly heated vertical annulus having a diameter ratio of 2.
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FiG. 8. Effect of operating parameters on the location of incipient flow instability for buoyancy assisted
flow in uniformly heated vertical annulus having a diameter ratio of 2.

10°

£
4
i
i
{

Dimensionle:
Based on T,

Quontities
X,

gh

g
4
c-lO-_
& ]
10° 0 M S — e
1 10 100 1000 2000
RePrXfr

FiG. 9. Effect of operating parameters on the location of incipient flow instability for buoyancy opposed
flow in uniformly heated vertical annulus having a diameter ratio of 2.

Flow instability criteria for annular geometries

Based on the model predictions of x;, for both buoy-
ancy assisted and opposed flows using various oper-
ating and geometrical conditions, as well as the exper-
imental data of refs. [4, 14], the following criteria for
incipient flow instability were suggested :

[Gr,/Re—(Gr,/Re)] = A(Re Pr D [x;,)*(e+1)

(12)
where (Gr,/Re)., = 3850, 4 = 0.18, and b = 2.32 for
upflow and (Gr,/Re), = 1500, A4 =15.15, and
b = 0.90 for downflow.

These criteria are compared in Figs. 8 and 10 with
the model predictions for buoyancy assisted flows for
different operating and geometrical parameters, respec-
tively. A similar comparison of these criteria with the

model predictions and the experimental data for buoy-
ancy opposed flow is shown in Figs. 9 and 11, respec-
tively. Figure 11 also provides a comparison of these
criteria with the experimental data for buoyancy assis-
ted flow. Note the good agreement between the data
and equation (12) (within +15 and +11% for buoy-
ancy opposed flow and assisted flow, respectively).

Based on this agreement with the experimental
data, equation (12) is proposed to demarcate laminar
and buoyancy induced turbulent flows in vertical
annuli having a uniformly heated inner wall and an
adiabatic outer wall. For a selected Graetz number
(Re Pr D_/x;), the flow would be either stable or
unstable depending on whether the Gr./Re values are
lower or higher than those predicted by equation (12),
respectively.



2170

«10'

D. V. Rao and M. S. EL-GENK

70

Buoyancy Assisted Flow

8.0

5.0

4.0

isofiux Inner Wal v
Adiabatic Quter Wal
t, = 294.3K v

Grq /Re

304

2.0+

104

020 127 17
a20 175 75
a175 225 169
e 15 275 1373
v 175 275 2063
x 191 225 2052

0.0 Y T T
40

80
Re Pr D /x,

T
100 120 140

FiG. 10. Effect of geometrical parameters on the location of incipient flow instability for buoyancy assisted
flow in uniformly heated vertical annuli.
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FiG. 11. Comparison of the criteria for onset of flow instability with the experimental data for both
buoyancy assisted and opposed flows.

CONCLUSIONS

A two-dimensional numerical model based on the
elliptic Navier-Stokes equations was developed to
predict the location of incipient instability, X;,, for
low Reynolds number water flows in vertical annuli.
The model predictions for X}, were in good agreement
with the experimental data of ref. [4], for buoyancy

assisted and opposed flow, and Sherwin and Wallis
{14] for buoyancy opposed flow.

To assess the effects of axial momentum diffusion
and radial momentum transfer on the accuracy of the
model prediction of x;, the research also solved the
parabolic form of the Navier-Stokes equations and
the boundary layer equations for x;. Results showed
that while the boundary layer approximation can
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adequately describe the flow field at very low Gr /Re
values, it significantly underestimates x;, at higher
Gr,/Re because of neglecting the radial momentum
transfer. Conversely, the results revealed that the axial
diffusion of momentum only insignificantly affects the
axial velocity profiles and, hence, the prediction of the
location of incipient flow instability. In conclusion,
either the elliptic or parabolic form of Navier-Stokes
equations would accurately predict the onset of flow
instability. However, the former is preferred because
the numerical solution remained stable until the
matrix equations became singular a few centimeters
downstream of x;,.

A general criteria (equation (12)) for predicting the
onset of flow instability in vertical annuli having an
isoflux inner wall and an adiabatic outer wall was
developed based on both the model predictions and
the experimental data of ref. [4, 14]. These criteria
were in good agreement with the experimental data of
ref. [4] and of Sherwin and Wallis {14] for annular
ratios of 2.0 and 3.0, respectively. Equation (12) is,
therefore, recommended for demarcating the laminar
and buoyancy induced turbulent flows in vertical
annuli.
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INSTABILITE INDUITE PAR FLOTTEMENT POUR DES ECOULEMENTS
LAMINAIRES DANS UN ESPACE ANNULAIRE VERTICAL—II. MODELE DU
DEVELOPPEMENT ET ANALYSE

Résumé—Un modéle numérique bidimensionnel, basé sur les équations elliptiques de Navier-Stokes. est
développé pour prédire I'emplacement de I'apparition de I'instabilité, x;. dans des écoulements d'eau a
faible nombre de Reynolds dans des espaces annulaires verticaux. Les résultats montrent que si la quantité
de mouvement radiale est négligée les valeurs de x;, sont sous-évaluées de 45% environ pour des valeurs
élevées du rapport Gr,/Re. Par contre la diffusion axiale de quantité de mouvement affecte peu le champ
des vitesses et par suite la précision du calcul de x;. Les résultats de I'analyse paramétrique étudiant les
effets de diverses conditions opératoires et des paramétres géométriques sont utilisés pour développer des
critéres généraux de prédiction de I'apparition de I'instabilité de I'écoulement dans des espaces annulaires
verticaux. Ces critéres conviennent & + 10 et + 15% aux données expérimentales, respectivement pour des
écoulements aidés ou contrariés par le flottement.
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AUFTRIEBSINDUZIERTE INSTABILITAT EINER LAMINAREN STROMUNG IN
EINEM SENKRECHTEN RINGKANAL—II. MODELLBILDUNG UND ANALYSE

Zusammenfassung—Es wird ein zweidimensionales numerischen Modell vorgestelit, das auf den elliptischen
Navier-Stokes-Gleichungen aufbaut und den Ort des Einsetzens der Instabilitét (x;,) in einem senkrechten,
wasserdurchstromten Ringkanal (kleine Reynolds-Zahlen) berechnet. Die Ergebnisse zeigen, daB x,, durch
Vernachldssigen des radialen Impulses bei groflen Werten von Gr,/Re um bis zu 45% zu klein berechnet
wird. Andererseits beeinflubt der axiale Impulsaustausch das Geschwindigkeitsfeld nur unwesentlich und
damit auch die Genauigkeit der Berechnung von x,. In einer Parameteruntersuchung werden die Einfliisse
unterschiedlicher Arbeitsbedingungen und unterschiedlicher geometrischer Bedingungen untersucht. Mit
Hilfe des Ergebnisses lassen sich allgemeine Kriterien fiir die Berechnung des Einsetzens der Stré-
mungsinstabilitit in senkrechten Ringkanilen entwickeln. Versuchsergebnisse fiir auftriebsunterstiitzte
und auftriebsbehinderte Stromungen koénnen mit Hilfe dieser Kriterien innerhalb +10 bzw. +15%
wiedergegeben werden.

HEYCTONYHUBOCTb JIAMHHAPHbBIX TEYEHUY B BEPTHUKAJIbHBIX KOJIBLIEBbIX
KAHAJIAX, BbI3BAHHAA NMOABEMHBIMH CHJIAMHU—II. PA3PABOTKA
MATEMATUYECKON MOJEJIM U AHAJIU3 PE3YJILTATOB

Amsoraims—Ha ocrose /umnTHYeckHx ypasHennii Hasse—Croxca padpaboTana nByMepHas YHCACHHAA
MOQENL UTA ONpeHeieHNs MECTa BO3HHKRHOBCHHS HEYCTOAYMBOCTH X, B BOJAE NPH MAJIBIX 3HAYCHHAX
yucna PefiHonbACa B BEPTHKANBHBIX KOJIBLUEBBIX KaHanax. Pe3ynpTaThl MOXa3biBaloT, 4TO NMpeHeOpexe-
HHE PANHATIBHBIM HMITYJIBCOM MEXOT NPHBECTH K 3aHHXEHHIO 3HA4eHHH x,, HA 45% [pH BHICOKHX 3Have-
HuAx Gr,/Re. AxcHanbHas ke muddy3ns AMIYLCA JIMIIbL HEIHAYUTENBHO BIMACT HA NOJSA CKOPOCTEH H,
CENOBATENbHO, HA TOYHOCTH PacYeTa 3HAYCHHA X,, . Pe3ynbTaThl napaMeTpHyeckoro anammnia apdexton
Pa3NHYHBIX PaGOYHX YCIOBHI M r€OMETPHYECKHX NTAPaMETPOB HCTIOIB3YIOTCH UIA YCTAHOBJICHHA o6IHX
KPHUTYPHEB OTIpENEsICHHA HEYCTONYHBOCTH TEYEHHA B BEPTHKAIBHBIX KOMBUEBLIX KaHanax. Pacxoxienus
MEXly YCTAHOB/ICHHBIMH KPHTEPHEMH H IKCNIEPHMEHTAIbHBIMH JaHBIMH COCTaBIMOT +10 n +15%
COOTBETCTBEHHO [UIA TE4E€HHH C COBMANAIOUIMM H NPOTHBOMNOJIOXKHBIM [AeACTBHEM NORBEMHLIX CH1 H
BBIHYXIACHHOI'O TEYCHHA.



